followers 0 popularity
following 0
fiberstorejennifer is not in any groups

What’s the Difference Between Transceiver & Transponder?

Oct 13th 2015 at 9:25 PM

Among many equipment and facilities that are needed to support the operation of a fiber optic communication network, fiber optic transponder and fiber optic transceiver are the two of them. As we cam see that the words---"transponder" and "transceiver" are have a prefix of "trans". Is it implying that they have something in common? The answer is "NO". So in this article we are going to make it clear that what;s the difference between them.

To begin with, we  need to recognize the the different definitions of fiber optic transceivers and fiber optic transponders.

Fiber Optic Transceiver
Most systems use a “transceiver” which includes both transmission and receiver in a single module. Its purpose, in broad terms, is to transmit and receive data. In fiber optic communication, the commonly used transceiver modules are hot-swappable I/O (input/output) devices which plug into module sockets. The transceiver acts to connect the electrical circuitry of the module with the optical or copper network. Devices such as routers or network interface cards provide one or more transceiver module slot (e.g GBIC, SFP, XFP), into which you can insert a transceiver module which is appropriate for that connection. The optical fiber, or wire, plugs into a connector on the transceiver module. There are multiple types of transceiver module available for use with different types of wire, fiber, different wavelengths within a fiber, and for communication over different distances. The most commonly used fiber optic transceivers include GBIC, SFP, SFP+, XFP, CFP, QSFP etc. They are widely used for different application, eg. 10G, 40G fiber optic transmission.

Fiber Optic Transponder
“Transponder” includes a transmitter and a responder. It is a similar device with transceiver. In optical fiber communications, a transponder is the element that sends and receives the optical signal from a fiber. A transponder is typically characterized by its data rate and the maximum distance the signal can travel. According to its specific applications, it is also known as wavelength-converting transponder, WDM transponder or fiber to fiber media converter. Fiber optic Transponders extend network distance by converting wavelengths (1310 to 1550), amplifying optical power and can support the “Three Rs” to Retime, Regenerate and Reshape the optical signal. In general, there is an O-E-O (optical-electrical-optical) function with this device. Fiber optic transponders and optical multiplexers are usually present in the terminal multiplexer as an important component for WDM (Wavelength Division Multiplexing) system. In addition, in nowadays market, many transponders are designed as protocol and rate-transparent fiber media converters that support SFP, SFP+ and XFP transceivers with data rates up to 11.32 Gpbs, and with seamless integration of different fiber types by converting multi-mode fiber to single-mode fiber, and dual fiber to single-fiber.

2U fiber Optic Transponder

Fiber Optic Transceiver vs Fiber Optic Transponder
A transponder and transceiver are both functionally similar devices that convert a full-duplex electrical signal in a full-duplex optical signal. The difference between the two is that fiber transceivers interface electrically with the host system using a serial interface, whereas transponders use a parallel interface. So transponders are easier to handle lower-rate parallel signals, but are bulkier and consume more power than transceivers. In addition, transceivers are limited to providing an electrical-optical function only (not differentiating between serial or parallel electrical interfaces), whereas transponders convert an optical signal at one wavelength to an optical signal at another wavelength. As such, transponders can be considered as two transceivers placed back-to-back.

Author’s Note
when you read here, I hope my article have helped you to have a deep understanding of transceivers, transponders, as well as the differences between them, especially in a networking,  Ethernet, or fiber-optic communications setting. You can also follow my blog for more information, for I will keeping submitting blogs about optical network products. But if you want to buy the products please visit Fiberstore.

Please to comment

sign in

Remember Me

New to IM faceplate? join free!

Lost Password? click here